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Measurement of SEA coupling loss factors using
point mobilities

By C.CacciornaTI AND J. L. GUYADER

Laboratoire Vibrations Acoustique, Institut National des Sciences Appliquées, Bat 303,
20 Avenue Albert Einstein, 69100 Villeurbanne, France
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z In this paper calculation of sEA coupling loss factors, using measured point mobility,

>= is derived for coupled systems, homogeneous or not, with rigid or soft links. Some
> p y g g
@) = simplifications and hypothesis are necessary to fit with sEa basic relations. To
(=4 E validate the theory an experiment was done on plates coupled in three points; the
25N @) agreement is reasonably good for homogeneous and non-homogeneous plates.
L O
w

1. Introduction

The sea method (see Lyon & Maidanik 1962 ; Scharton & Lyon 1968) offer a good tool
to analyse and predict acoustic and vibration transmissions in coupled systems (see
Craik (1982) for building structures and Plunt (1980) for ships). From the practical
point of view, the capital element for applying sea is the determination of the
coupling loss factors (cLF). Theoretical estimations of cLF can be obtained in simple
cases from wave propagation in infinite coupled beams, plates, shells (for plates see
Gibbs & Guilford 1976, 1987; Wohle ef al. 1981; Van Backel & De Vries 1983). In
general cases Keane & Price (1987) gave a relation for cLF using direct and cross
receptance of coupled systems. It is also possible to derive the cLF from Green’s
function of decoupled structure, as demonstrated by Davies & Wahab (1981) on two
coupled beams.

When people deal with real industrial structures, difficulties arise; the structures
are non-academic due to complicated shapes and heterogeneities, the links are often
non-rigid, dissipative and localized at some points. In this case it is impossible to
calculate theoretically the coupling loss factors, except if a finite element
modelization is used (see Simmons (1991) for example). However, this technique is
not easy to use in the acoustic frequency range. A second possibility consists of
measuring the ¢LF, by an experimental identification (see Lalor 1987). It is based on
an inverse SEA procedure, which calculates the cLF, from the energies of the coupled
systems. Two difficulties can be noticed ; the systems must be coupled to apply the
method, thus it is impossible to predict cLF from measurement on decoupled
structures. The calculation of cLF from energies necessitates the resolution of a linear
system that can be ill conditioned, this is related to the relative insensibility of sEa
energy prediction, to modifications of coupling loss factors.

The study of structures coupled by point links, can be made with the mobility
technique; one has to characterize the coupling points with their direct and transfer
mobilities as presented, for example, by Hemingway (1986). On complicated
structures (e.g. industrial) the mobilities must be measured. These measurements,
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466 C. Cacciolati and J. L. Guyader

contrary to inverse SEA procedure, are done on decoupled structures. The difficulties
in applying this method are because of the appearance of singular frequencies, due
to the cumulation of errors, in particular when the number of links is large. The
precise measurement of mobilities is thus very important for this technique,
unfortunately the uncertainty is large, especially on the phase and when frequency
is high. It seems interesting to us to mix the two approaches to calculate cL.F with
measured mobilities. This is interesting from two points of view: (i) the cLF are
determined from measurements on decoupled structures; and (ii) only the active
power is necessary. The reactive part, difficult to measure, can be ignored.

2. Direct and transfer mobilities

Let us consider two systems coupled in some points, and excited at a given angular
frequency . The problem consists in calculating the coupled response, using
decoupled behaviour, of each system. This can be done by introducing mobilities
My(Q;, @) defined as the velocity of system I at point ; when point ), is excited by
a force of unit amplitude and angular frequency w. It is a complex quantity
depending on frequency. If the two systems are excited they have a velocity before
coupling of 7(Q,) and VH(Q ), the velocity of each structure after coupling can be
obtained at each frequency with relations (1) and (2), based on linearity of the
systems and links:

V(@) = T(Q) + = M(Qy, @) F(Q,), (1)

Z
~ N
Ful@) = Tu@)+ 2 1

(@, @) (@) 2)

where an overbar indicates a coupling point, and a prime a point of system II. ¢, and
Q; are the coupling points respectively on system I and IT. The coupling forces acting
on system I and IT are F'§(Q;), F5,(Q;). To calculate the coupling forces, in the case
of rigid links, one has to write equality of velocity and equilibrium of forces, at the
coupling points:

(@) = V@), (3)
F{(@) + F51(@)) = 0. (4)

After calculation one obtains
U@} = [My(@Qy, @) +M (@7, @I V(@) — V7 (@)} (5)

3. The case of one rigid link

To simplify the analysis, let us consider only one link, equation (5) reduces to

Tu(@)-"@)
M@y, Q1) +M (@, @7)

It is now easy to calculate the power injected in system I and IT:

F‘I:(Ql) =

I1(Qy) = 3 Re {FH(Q,) V(@) (7)
II'(@) = 3 Re {Fy(Q) Vi(@D}- (8)

Phal. Trans. R. Soc. Lond. A (1994)
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Point mobilities 467

The rigid link being non dissipative, the injected power in each systems are opposite.
The power going out of system II through the link is equal to the injected power in
system I: o

Iy = 1 Re{(V; + Vi) F*+ (M —Myy) FF*}. (9)

To obtain (9) one has to use (7) and (8) and simplify the notation
I7I = I7I(Q_1)’ MI =MI(Q_1? Ql)) I7II = I7II(Q_/I)’ MII =MII(Q_/1? Q_/l)’
Fy(Q) = —Fq(@) =F

Replacing # with expression (6) gives, after calculations,

e (M) <MH>] [ e (K VM —T¥ VHMn]
I, g Re@y _pp Re@y | 1 (10
et = [' (v L7 T 0+ 3 (10)

This equation is valid for a single frequency analysis, in the case of band excitation
it must be integrated over frequency. When non-correlated vibrations are considered
the third term of (10) integrated over frequency is neglected. Equation (10) reduces

to
/5w Re@h) \ 1/, Re(iy)
<> = 5 (1 o) 5 Pt )

where brackets signify integration over a frequency band Aw.
If in addition one supposes that decoupled vibration fields vary smoothly with
frequency, it is possible to approximate (11) with

(= L0 ( Relhy 1AM | Reh ) 2)
- 2 Aw \|IM+My?/ 2 Ao \|M;+M?

Physically this assumption corresponds to systems having sufficiently high modal
overlap. This equation relates the power flow from system II to system I, with local
velocities of both systems before coupling.

To introduce energies one has to assume that the vibration fields are homogeneous
and so vary slowly with location. In homogeneous systems it was demonstrated by
Dowell & Kubota (1985), except near the boundary. The equality of kinetic and

deformation energies is assumed, thus for decoupled system, the total energy over
the bandwidth Aw is

By = 5 ILmd PR D = 3u Vi, (13)

where the density of mass of system I is g; and the double bracket represents spacial
integration over the system. The following can be applied if the coupling point is not
situated close to boundary. By using (12) in connection with (13) gives

Uy = "7111<E11> 77111<E Yo (14)
. 1 1 Re (M)
with = o +M;|2>]’ 19
1 1 Re (M)
i = me[E<WI +JWIIII|2>:|, 16)

where m; = 1)) is the total mass of the system and w is the centre band frequency.
Phil. Trans. R. Soc. Lond. A (1994)
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468 C. Cacciolati and J. L. Guyader

A last assumption is necessary to identify with sEa relation, it is the weak coupling
hypothesis in the sense of energies varying weakly before and after coupling. Let us
introduce the energies after coupling £; and #;:

By = <E~I>+<61> and () = <E11>+<9H>~ (17)
Equation (14) gives
Uy = 0l KB — 1B — e + 1ner |, (18)

and the weak coupling assumes that one can neglect the two last terms in (18).

Ty ) R By =1l ], 1

s irites il
i My, |Ao \IMy+Myl*/ | (19)
e e
M o Ao NI+ M/ |

This equation is the basic sEaA relation, it shows that coupling loss factors can be
calculated from point mobilities with (19).

4. The case of several rigid links

Equation (19) is established for one rigid link. In a practical situation several links
must often be considered and an extension to this case is of interest. When several
links are coupling the two systems, the exact calculation of powers exchanged is
cumbersome, as transfer mobilities must be used. From the experimental point of
view, measurement of direct and transfer mobilities is not easy when the number of
links increases. So an important question arises: are transfer mobilities strongly
modifying the transmitted power from one system to the other? In other words is
each link exchanging power independently from the others ? To answer this question
we consider a system of two plates coupled by three rigid links. The geometry of the
system is the same as the one used in experiment (see figure 2) but plates here are
simply supported to simplify the calculation. The kinetic energy 7' of the receiver
plate II is calculated when a unit force is applied at point E on the plate 1. Figure
1 presents the difference in dB between the exact solution 7, and approximation
neglecting transfer mobilities 7,. For systems of high modal density and when an
average over frequency is done, the influence of transfer mobility is negligible.

In consequence coupling loss factors for several rigid links can be obtained by
summation of expressions (19) over points of coupling

1 N Re(M{“)>
_ L/ Redly) \ 20
i meElAw<uvz'f+M'ﬁ|2 (20)

1 ¥ Re (M%) >
=—— 3 —( ), 21
i mlwkzlew<W]IC+M{cI|2 =1

The exponent k indicates the link number, and N is the total number of coupling
points. For large values of NV, where the coupling points become close to each other

Phil. Trans. R. Soc. Lond. A (1994)
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8
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0 2000 4000
frequency / Hz
Figure 1. Influence of the transfer mobility: 4 = 10log (7}) —10log (7}) against frequency in
Hertz.

it is important to verify that the transfer mobilities can be still neglected. In other
words links must be sufficiently distant otherwise it is necessary to use a link or
surface effective mobility (see, for example, Naji et al. 1992 ; Petersson & Plunt 1982).

5. The case of non-homogeneous structures

In the previous analysis, vibration fields are supposed homogeneous, for industrial
structures this assumption is not true in general. If, as previously assumed,
decoupled vibrations are non-correlated, and structures are coupled rigidly in one
point, equation (12) remains valid. The difference between homogeneous and non-
homogeneous systems comes from equation (13) as local quadratic velocity can vary
strongly in non-homogeneous systems. Let us introduce the homogeneity factor ¢
calculated on the decoupled structure with their own excitation, over the bandwidth
frequency Aw. It is the non-dimensional ratio indicated by (22). Physically it
corresponds to the ratio of coupling point energy with the total mass of the system
over total energy of the system.

_ @I me g @) my (22)
2]l 2B

This homogeneity factor is equal to 1 for homogeneous vibration field. The equation
(14) can then be used but with modified coupling loss factors

_ _9u {_1_ Re (M) >]
i my o [ Ao \|My+Myl*/ |
P 91 [_1_< Re (My;) >]
M mpw| Aw \|M+My?/ |

For several coupling points which verify the assumptions of §4, equations (13) and
(14) remain valid. It is only necessary to sum the power flow of each link (see (21) and

(22)),
1 N . 1<Re(]ll’f) >]
WIII”mIIwka[gHAw W]IC+M{CIl2 )

1 X e 1 < Re (M%) >j|
i = mlwkzjl [91 Aw \|MF+ME1*/ |

Phil. Trans. R. Soc. Lond. A (1994)
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470 C. Cacciolati and J. L. Guyader

6. The case of non-rigid coupling

When dealing with industrial links, one has often to consider non-rigid coupling,
in this case equations (3) and (4) are no more true and must be replaced by a matrix
relation between point velocities after coupling, and coupling forces acting on both

systems (F}) and Fy;)
i-Li 2l
_ Tl (25)
[VH Ay Apndn

The terms of the matrix characterize mobilities of the link; 4, (resp. Ay;) is the
direct mobility at coupling point with system I (resp. I1), 4;;; and A are transfer
mobilities. The coupling forces can be calculated equating the velocity after coupling
of the link and of the structure, one obtains the coupling forces from decoupled
velocities of structures at coupling points:

[FI] — l[AIIII—MII _'AIII ][171] (26)
1y 4 “AIII AII_MI VII ’

where 4 = (A;;—M) (Ayu—My)— A Ay 1t is now easy to calculate powers
injected in each system

II'=1Re[F¥V;] and IT"=1Re[F} V], (27)

only, of course, if the coupling is dissipative. The powers IT' and IT'" are not opposite,
and classical sa relation is no more applicable, on the contrary for non-dissipative
coupling, assuming non-correlated decoupled vibrations and smooth variation with
frequency of decoupled quadratic velocities, one obtains instead of (12)

I, . =YV 2 |4 nl* —Re [(4+My Ay —M My) (Af, —MY))
I->11 41711 IAIZ

_%“71'2 <IAIII|2—R‘6 [(4 +M1AIIIZﬁZ_M1MH) (A;kIII_MikI)]>. (28)

The coupling loss factors can then be calculated as previously, one obtains for non-
homogeneous structures

1 1 <|AIII|2—R’el(A+MIIAII_MIMII)(A?I_Mik)]>

. 29
My Ao’ 242 (29)

N1 =

7 .—:_1, Lq |4 —Re [(4+M Ay —M Myy) (AT —Mi)] (30)
11 meAw.I 24P . :

7. Experimental validation

The different expressions of the coupling loss factors previously presented are
established with several assumptions and simplifications. Their validity must then be
demonstrated on experimental ground, several experiments were done on coupled
plates to calculate coupling loss factors from measured mobilities and then to
compare energy of plates using sEa relations and direct calculations.

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 2. Experiment.
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frequency / Hz

Figure 3. Plates velocities (m s7') against frequency, without mechanical links.
on excited plate; -+« -- , point X;; on receiving plate.

, Point X,

(@) The case of homogeneous plates

Two plates were coupled with three mechanical links to connect rigidly transverse
displacement but not flexural rotation, this was achieved using stingers (see figure 2).
To permit power flow, plate II was covered with a layer of viscoelastic material.
Plates were made of steel, they had free edges and were attached by soft springs
on a rigid frame. Plate I was 0.7mx1.0mx0.002m and plate II was
0.5 m x 0.75 m x 0.002 m. The air gap between plates was 0.085 m. The coordinates
of the coupling points @, and driving point £ were given on the general coordinate
system X, Y:£(0.22 m, 0.36 m), @,(0.5 m, 0.23 m), @,(0.195 m, 0.23 m), @;(0.35 m,
0.77 m). The masses were 10.35 kg for plate I, 6.40 kg for plate 11, 0.0051 kg for each
link, 0.003 kg for the dynamic added mass by the force transducer and its screw of
fixation. The first resonance frequency of links considered simply supported at each
end was 4150 Hz.

Figure 3 shows an experimental result on the plates velocities, when the
mechanical links are removed to determine if acoustic transmission is negligible
compared with mechanical transmission. The direct excitation is applied at the point
E on plate I, and the plate IT is excited by the acoustical transmission through the
air gap. The ratio of the speeds measured at points X; (resp. X;;) located on the
middle of plate I (resp. IT) is greater than 100 instead of 2 with mechanical links, so
the acoustical transmission through the air gap between the plates may be neglected.

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 5. Point mobilities on the receiving plate, at coupling point Q3 against frequency in
Hertz. (o) Imaginary part, (b) real part.

10 g
‘4% 10‘ E 7712
2 E Tn
%0 10‘3 E
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4 o L
1
, 104 b
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< frequency / Hz
'S Figure 6. Calculated coupling loss factors expressions (20) and (21) against frequency in 3
g g g q y m g
@) : octave bandwidth.
A
QO Measurements of internal loss factors against frequency of decoupled plates are
T O presented in figure 4. They were deduced from a third octave measurement of the
= w reberation time.

The mobilities of decoupled plates at the junction points were measured, figure 5
shows a typical result. The values of the mobilities do not vary strongly with point
of measurement, this is consistent with the homogeneity of the plate. Applying
expressions (20) and (21) of the coupling loss factors one get the results shown in
figure 6.
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Figure 8. Heterogeneity factors against frequency in Hertz. , @y - , point @y;

————, point @,.

The two cLr follow the same tendency, they decrease with frequency from 0.01 to
0.001, and remain close together in the whole frequency range.

To verify the validity of calculated coupling loss factors an experiment was done
on the two coupled plates described previously. Figure 7 compares the measured
plate energy ratio {E,>/{E,y and the sEa prediction obtained, introducing loss
factors presented in figure 6, in equation (31):

KB D [<E) = (g1 +75)/ Mha- (31)

The sEa prediction overestimates the transmission in general, but the difference
between the two curves is reasonable in average. One also notices the variation of the
damping loss factor of the receiving plate, in equation (31), introduces strong
variation of the SEA energy ratio that can explain the overestimation.

(b) The case of non-homogeneous plate

To check the validity of expressions (24) of coupling loss factors for non-
homogeneous structures, the experiment described in §7a was modified. Three added
masses (0.175 kg each) were placed on the excited plate at points of coupling.

Figure 8 presents the measured heterogeneity factors associated to each added
masses. The three curves are close together and decrease with frequency. This
tendency is consistent with the added mass behaviour that blocks the movement
when the frequency increases.

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 9. Internal loss factor of structure 2 and sEa coupling loss factors 4,, (———-) and 7,,
(——) against frequency.
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Figure 10. Ratio <#,>/<{H,) in dB against frequency in Hertz, where dB = 10log (<E,>/{H,>).
——0——, Direct measurement ; ——, sgaA prediction.

The coupling loss factors were calculated according to (24) and the results are
presented in figure 9. The coupling loss factors have close values and decrease
strongly with frequency (compared with the experiment on homogeneous plates,
figure 6). In the high-frequency range, the internal damping of the receiver structure
is greater than coupling loss factors and thus governs the transmission. The ratio of
the plate energies is close to 2 below 1000 Hz, and increases after, up to 130 at
4000 Hz (see figure 10). The predicted value using sEA coupling loss factors
overestimate the transmission as for homogeneous plates, but give the right
tendency versus frequency.

8. Conclusion

Determination of sEa coupling loss factors from measured mobilities on decoupled
structures have been presented. In the case of two plates coupled in three points, the
validity of the expression derived for coupling loss factors, has been demonstrated
from an experiment. The heterogeneity factor must be introduced for heterogeneous
structure, and used as a weighting function in cL¥ expression.

The derivation of sEa relations from mobility concepts allows us to introduce non-
rigid coupling characterized by input and transfer mobility. The validity of the
approach will be checked on experimental ground in the future.

The results given here are applicable for weakly coupled subsystems with high
modal overlap. More complex relations would be needed in other circumstances.

Phal. Trans. R. Soc. Lond. A (1994)
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